A K-means Supported Reinforcement Learning Framework to Multi-dimensional Knapsack

Author:

Bushaj SabahORCID,Büyüktahtakın İ. EsraORCID

Abstract

AbstractIn this paper, we address the difficulty of solving large-scale multi-dimensional knapsack instances (MKP), presenting a novel deep reinforcement learning (DRL) framework. In this DRL framework, we train different agents compatible with a discrete action space for sequential decision-making while still satisfying any resource constraint of the MKP. This novel framework incorporates the decision variable values in the 2D DRL where the agent is responsible for assigning a value of 1 or 0 to each of the variables. To the best of our knowledge, this is the first DRL model of its kind in which a 2D environment is formulated, and an element of the DRL solution matrix represents an item of the MKP. Our framework is configured to solve MKP instances of different dimensions and distributions. We propose a K-means approach to obtain an initial feasible solution that is used to train the DRL agent. We train four different agents in our framework and present the results comparing each of them with the CPLEX commercial solver. The results show that our agents can learn and generalize over instances with different sizes and distributions. Our DRL framework shows that it can solve medium-sized instances at least 45 times faster in CPU solution time and at least 10 times faster for large instances, with a maximum solution gap of 0.28% compared to the performance of CPLEX. Furthermore, at least 95% of the items are predicted in line with the CPLEX solution. Computations with DRL also provide a better optimality gap with respect to state-of-the-art approaches.

Funder

Directorate for Engineering

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3