Abstract
AbstractWe study convergence of the trajectories of the Heavy Ball dynamical system, with constant damping coefficient, in the framework of convex and non-convex smooth optimization. By using the Polyak–Łojasiewicz condition, we derive new linear convergence rates for the associated trajectory, in terms of objective function values, without assuming uniqueness of the minimizer.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Management Science and Operations Research,Control and Optimization,Computer Science Applications,Business, Management and Accounting (miscellaneous)
Reference44 articles.
1. Allen-Zhu, Z., Li, Y., Song, Z.: A convergence theory for deep learning via over-parameterization. In: Chaudhuri, K., Salakhutdinov R. (eds.) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 97, pp. 242–252. PMLR (2019). http://proceedings.mlr.press/v97/allen-zhu19a.html
2. Alvarez, F.: On the minimizing property of a second order dissipative system in Hilbert spaces. SIAM J. Control Optim. 38(4), 1102–1119 (2000)
3. Alvarez, F., Attouch, H., Bolte, J., Redont, P.: A second-order gradient-like dissipative dynamical system with hessian-driven damping. Application to optimization and mechanics. J. Math. Pures Appl. 81(8), 747–779 (2002)
4. Apidopoulos, V., Aujol, J.F., Dossal, C.: Convergence rate of inertial forward-backward algorithm beyond Nesterov’s rule. Math. Program. (2018). https://doi.org/10.1007/s10107-018-1350-9
5. Apidopoulos, V., Aujol, J.F., Dossal, C.: The differential inclusion modeling FISTA algorithm and optimality of convergence rate in the case b $$\le 3$$. SIAM J. Optim. 28(1), 551–574 (2018)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献