Sequential model based optimization of partially defined functions under unknown constraints

Author:

Antonio CandelieriORCID

Abstract

AbstractThis paper presents a sequential model based optimization framework for optimizing a black-box, multi-extremal and expensive objective function, which is also partially defined, that is it is undefined outside the feasible region. Furthermore, the constraints defining the feasible region within the search space are unknown. The approach proposed in this paper, namely SVM-CBO, is organized in two consecutive phases, the first uses a Support Vector Machine classifier to approximate the boundary of the unknown feasible region, the second uses Bayesian Optimization to find a globally optimal solution within the feasible region. In the first phase the next point to evaluate is chosen by dealing with the trade-off between improving the current estimate of the feasible region and discovering possible disconnected feasible sub-regions. In the second phase, the next point to evaluate is selected as the minimizer of the Lower Confidence Bound acquisition function but constrained to the current estimate of the feasible region. The main of the paper is a comparison with a Bayesian Optimization process which uses a fixed penalty value for infeasible function evaluations, under a limited budget (i.e., maximum number of function evaluations). Results are related to five 2D test functions from literature and 80 test functions, with increasing dimensionality and complexity, generated through the Emmental-type GKLS software. SVM-CBO proved to be significantly more effective as well as computationally efficient.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Management Science and Operations Research,Control and Optimization,Computer Science Applications

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An efficient mixed constrained Bayesian optimization for handling known and unknown constraints;Advanced Engineering Informatics;2024-10

2. A new risk level identification model for aviation safety;Engineering Applications of Artificial Intelligence;2024-10

3. Bayesian optimization with hidden constraints for aircraft design;Structural and Multidisciplinary Optimization;2024-07

4. StreamBed: Capacity Planning for Stream Processing;Proceedings of the 18th ACM International Conference on Distributed and Event-based Systems;2024-06-24

5. Constrained Bayesian Optimization with Lower Confidence Bound;Technometrics;2024-05-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3