Abstract
AbstractNonnegative Matrix Factorization (NMF) has attracted a great deal of attention as an effective technique for dimensionality reduction of large-scale nonnegative data. Given a nonnegative matrix, NMF aims to obtain two low-rank nonnegative factor matrices by solving a constrained optimization problem. The Hierarchical Alternating Least Squares (HALS) algorithm is a well-known and widely-used iterative method for solving such optimization problems. However, the original update rule used in the HALS algorithm is not well defined. In this paper, we propose a novel well-defined update rule of the HALS algorithm, and prove its global convergence in the sense of Zangwill. Unlike conventional globally-convergent update rules, the proposed one allows variables to take the value of zero and hence can obtain sparse factor matrices. We also present two stopping conditions that guarantee the finite termination of the HALS algorithm. The practical usefulness of the proposed update rule is shown through experiments using real-world datasets.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Management Science and Operations Research,Control and Optimization,Computer Science Applications,Business, Management and Accounting (miscellaneous)
Reference56 articles.
1. Arora, S., Ge, R., Kannan, R., Moitra, A.: Computing a nonnegative matrix factorization–provably. SIAM J. Comput. 45(4), 1582–1611 (2016)
2. Berry, M.W., Browne, M., Langville, A.N., Pauca, V.P., Plemmons, R.J.: Algorithms and applications for approximate nonnegative matrix factorization. Comput. Stat. Data Anal. 52(1), 155–173 (2007)
3. Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
4. Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1548–1560 (2010)
5. Cichocki, A., Phan, A.H.: Fast local algorithms for large scale nonnegative matrix and tensor factorizations. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 92(3), 708–721 (2009)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献