1. Agarwal, A.: Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization. IEEE Trans. Inform. Theory 58(5), 3235–3249 (2012)
2. Bach, F., Moulines, E.: Non-asymptotic analysis of stochastic approximation algorithms for machine learning. Neural Information Processing Systems (NIPS), Spain. hal-00608041, (2011)
3. Bertsekas, D.P.: Nonlinear Programming, 3rd edn. Athena Scientific, Belmont, Massachusetts (2016)
4. Bertsekas, D.P., Nedić, A., Ozdaglar, A.E.: Convex Analysis and Optimization. Athena Scientific, Belmont, Massachusetts (2003)
5. Bot, R.I., Mertikopoulos, P., Staudigl, M., Vuong, P.T.: Forward-backward-forward methods with variance reduction for stochastic variational inequalities. arXiv preprint arXiv:1902.03355v1 (2019)