Abstract
AbstractA global optimization approach for solving non-monotone equilibrium problems (EPs) is proposed. The class of (regularized) gap functions is used to reformulate any EP as a constrained global optimization program and some bounds on the Lipschitz constant of such functions are provided. The proposed global optimization approach is a combination of an improved version of the algorithm, which exploits local bounds of the Lipschitz constant of the objective function, with local minimizations. Unlike most existing solution methods for EPs, no monotonicity-type condition is assumed in this paper. Preliminary numerical results on several classes of EPs show the effectiveness of the approach.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Management Science and Operations Research,Control and Optimization,Computer Science Applications,Business, Management and Accounting (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献