Author:
Iusem A. N.,Martínez-Legaz J. E.,Todorov M. I.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Management Science and Operations Research,Control and Optimization,Computer Science Applications
Reference12 articles.
1. Cottle, R.W., Pang, J.S., Stone, R.S.: The Linear Complementarity Problem. Academic Press, New York (1992)
2. Daniilidis, A., Martínez-Legaz, J.E.: Characterization of evenly convex sets and evenly quasiconvex functions. J. Math. Anal. Appl. 273, 58–66 (2002)
3. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press, Princeton (1963)
4. Goberna, M.A., González, E., Martínez-Legaz, J.E., Todorov, M.I.: Motzkin decomposition of closed convex sets. J. Math. Anal. Appl. 364, 209–221 (2010)
5. Goberna, M.A., Iusem, A.N., Martínez-Legaz, J.E., Todorov, M.I.: Motzkin decomposition of closed convex sets via truncation. J. Math. Anal. Appl. 400, 35–47 (2013)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Closed convex sets that are both Motzkin decomposable and generalized Minkowski sets;Journal of Nonlinear and Variational Analysis;2024-05-01
2. Preface;Optimization;2022-01-02
3. Penumbras and Separation of Convex Sets;Results in Mathematics;2021-01-09
4. On M-predecomposable sets;Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry;2020-07-06
5. On M-decomposable sets;Journal of Mathematical Analysis and Applications;2020-05