Combining hybrid genetic search with ruin-and-recreate for solving the capacitated vehicle routing problem

Author:

Simensen MartinORCID,Hasle Geir,Stålhane Magnus

Abstract

AbstractThe Capacitated Vehicle Routing Problem (CVRP) has been subject to intense research efforts for more than sixty years. Yet, significant algorithmic improvements are still being made. The most competitive heuristic solution algorithms of today utilize, and often combine, strategies and elements from evolutionary algorithms, local search, and ruin-and-recreate based large neighborhood search. In this paper we propose a new hybrid metaheuristic for the CVRP, where the education phase of the hybrid genetic search (HGS) algorithm proposed by (Vidal Hybrid Genetic Search for the CVRP: Open-Source Implementation and SWAP* Neighborhood 2020) is extended by applying large neighborhood search (LNS). By performing a series of computational experiments, we attempt to answer the following research questions: 1) Is it possible to gain performance by adding LNS as a component in the education phase of HGS? 2) How does the addition of LNS change the relative importance of the local search neighborhoods of HGS? 3) What is the effect of devoting computational efforts to the creation of an elite solution in the initial population of HGS? Through a set of computational experiments we answer these research questions, while at the same time obtaining a good configuration of global parameter settings for the proposed heuristic. Testing the heuristic on benchmark instances from the literature with limited computing time, it outperforms existing algorithms, both in terms of the final gap and the primal integral.

Funder

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Management Science and Operations Research,Control and Optimization,Computer Networks and Communications,Information Systems,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3