Weighted iterated local branching for mathematical programming problems with binary variables

Author:

Rodrigues FilipeORCID,Agra AgostinhoORCID,Hvattum Lars MagnusORCID,Requejo CristinaORCID

Abstract

AbstractLocal search algorithms are frequently used to handle complex optimization problems involving binary decision variables. One way of implementing a local search procedure is by using a mixed-integer programming solver to explore a neighborhood defined through a constraint that limits the number of binary variables whose values are allowed to change in a given iteration. Recognizing that not all variables are equally promising to change when searching for better neighboring solutions, we propose a weighted iterated local branching heuristic. This new procedure differs from similar existing methods since it considers groups of binary variables and associates with each group a limit on the number of variables that can change. The groups of variables are defined using weights that indicate the expected contribution of flipping the variables when trying to identify improving solutions in the current neighborhood. When the mixed-integer programming solver fails to identify an improving solution in a given iteration, the proposed heuristic may force the search into new regions of the search space by utilizing the group of variables that are least promising to flip. The weighted iterated local branching heuristic is tested on benchmark instances of the optimum satisfiability problem, and computational results show that the weighted method is superior to an alternative method without weights.

Funder

Fundação para a Ciência e a Tecnologia

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Management Science and Operations Research,Control and Optimization,Computer Networks and Communications,Information Systems,Software

Reference31 articles.

1. Alsheddy, A., Voudouris, C., Tsang, E.P.K., Alhindi, A.: Guided local search. In: Martí, R., Panos, P., Resende, M.G. (eds.) Handbook of heuristics, pp. 1–37. Springer International Publishing, Cham (2016)

2. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Sur. 35(3), 268–308 (2003)

3. Boussaïd, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. 237, 82–117 (2013)

4. da Silva, R., Hvattum, L.M., Glover, F.: Combining solutions of the optimum satisfiability problem using evolutionary tunneling. MENDEL Soft Comput. J. 26(1), 23–29 (2020)

5. Danna, E., Rothberg, E., Pape, C.L.: Exploring relaxation induced neighborhoods to improve MIP solutions. Math. Program. 102(1), 71–90 (2005)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved sequential insertion heuristics for berth allocation problems;International Transactions in Operational Research;2023-09-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3