Enhancing searches for resonances with machine learning and moment decomposition

Author:

Kitouni Ouail,Nachman Benjamin,Weisser Constantin,Williams Mike

Abstract

Abstract A key challenge in searches for resonant new physics is that classifiers trained to enhance potential signals must not induce localized structures. Such structures could result in a false signal when the background is estimated from data using sideband methods. A variety of techniques have been developed to construct classifiers which are independent from the resonant feature (often a mass). Such strategies are sufficient to avoid localized structures, but are not necessary. We develop a new set of tools using a novel moment loss function (Moment Decomposition or MoDe) which relax the assumption of independence without creating structures in the background. By allowing classifiers to be more flexible, we enhance the sensitivity to new physics without compromising the fidelity of the background estimation.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference103 articles.

1. J. Button, G.R. Kalbfleisch, G.R. Lynch, B.C. Maglić, A.H. Rosenfeld and M.L. Stevenson, Pion-pion interaction in the reaction barp + p → 2π+ + 2π− + nπ0, Phys. Rev. 126 (1962) 1858 [INSPIRE].

2. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

3. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

4. CMS collaboration, Search for high mass dijet resonances with a new background prediction method in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV, JHEP 05 (2020) 033 [arXiv:1911.03947] [INSPIRE].

5. ATLAS collaboration, Search for new resonances in mass distributions of jet pairs using 139fb-1 of pp collisions at $$ \sqrt{s} $$ = 13 TeV with the ATLAS detector, JHEP 03 (2020) 145 [arXiv:1910.08447] [INSPIRE].

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3