Prospects for strong coupling measurement at hadron colliders using soft-drop jet mass

Author:

Hannesdottir Holmfridur S.,Pathak Aditya,Schwartz Matthew D.,Stewart Iain W.

Abstract

Abstract We compute the soft-drop jet-mass distribution from pp collisions to NNLL accuracy while including nonperturbative corrections through a field-theory based formalism. Using these calculations, we assess the theoretical uncertainties on an αs precision measurement due to higher order perturbative effects, nonperturbative corrections, and PDF uncertainty. We identify which soft-drop parameters are well-suited for measuring αs, and find that higher-logarithmic resummation has a qualitatively important effect on the shape of the jet-mass distribution. We find that quark jets and gluon jets have similar sensitivity to αs, and emphasize that experimentally distinguishing quark and gluon jets is not required for an αs measurement. We conclude that measuring αs to the 10% level is feasible now, and with improvements in theory a 5% level measurement is possible. Getting down to the 1% level to be competitive with other state-of-the-art measurements will be challenging.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference97 articles.

1. L3 collaboration, Studies of hadronic event structure and comparisons with QCD models at the Z0 resonance, Z. Phys. C 55 (1992) 39 [INSPIRE].

2. SLD collaboration, Measurement of αs($$ {M}_Z^2 $$) from hadronic event observables at the Z0 resonance, Phys. Rev. D 51 (1995) 962 [hep-ex/9501003] [INSPIRE].

3. DELPHI collaboration, Measurement of event shape and inclusive distributions at $$ \sqrt{s} $$ = 130 GeV and 136 GeV, Z. Phys. C 73 (1997) 229 [INSPIRE].

4. ALEPH collaboration, Studies of QCD at e+e− centre-of-mass energies between 91 GeV and 209 GeV, Eur. Phys. J. C 35 (2004) 457 [INSPIRE].

5. DELPHI collaboration, The measurement of αs from event shapes with the DELPHI detector at the highest LEP energies, Eur. Phys. J. C 37 (2004) 1 [hep-ex/0406011] [INSPIRE].

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3