Author:
Ávila Daniel,Patiño Leonardo
Abstract
Abstract
We use the gauge/gravity correspondence to study the thermodynamics of a magnetized quark-gluon plasma in the presence of a scalar operator of dimension Δ = 2. We proceed by working in a five-dimensional gauged supergravity theory, where we numerically construct an asymptotically AdS5 background that describes a black D3-brane in the presence of a magnetic and a scalar fields. We study the asymptotic behavior of the background and its fields close to the AdS5 region to latter perform a thermodynamic analysis of the solution that includes the renormalization of the free energy associated to it. We find that because of the presence of the scalar operator, there exists a maximum intensity for the magnetic field that the plasma can hold, while for any given intensity smaller than that value, there are two states that differ in their vacuum expectation value for the scalar operator. We show that one of the two branches just mentioned is thermodynamically favored over the other.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献