Author:
Chalabi Adam,Kumar S. Prem,O’Bannon Andy,Pribytok Anton,Rodgers Ronnie,Sisti Jacopo
Abstract
Abstract
We compute entanglement entropy (EE) of a spherical region in (3 + 1)-dimensional $$ \mathcal{N} $$
N
= 4 supersymmetric SU(N) Yang-Mills theory in states described holographically by probe D3-branes in AdS5 × S5. We do so by generalising methods for computing EE from a probe brane action without having to determine the probe’s backreaction. On the Coulomb branch with SU(N) broken to SU(N − 1) × U(1), we find the EE monotonically decreases as the sphere’s radius increases, consistent with the a-theorem. The EE of a symmetric-representation Wilson line screened in SU(N − 1) also monotonically decreases, although no known physical principle requires this. A spherical soliton separating SU(N) inside from SU(N − 1) × U(1) outside had been proposed to model an extremal black hole. However, we find the EE of a sphere at the soliton’s radius does not scale with the surface area. For both the screened Wilson line and soliton, the EE at large radius is described by a position-dependent W-boson mass as a short-distance cutoff. Our holographic results for EE and one-point functions of the Lagrangian and stress-energy tensor show that at large distance the soliton looks like a Wilson line in a direct product of fundamental representations.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献