Cosmology and signals of light pseudo-Dirac dark matter

Author:

González Mariana CarrilloORCID,Toro Natalia

Abstract

Abstract In this paper, we analyze the cosmological evolution, allowed parameter space, and observational prospects for a dark sector consisting of thermally produced pseudo-Dirac fermions with a small mass splitting, coupled to the Standard Model through a dark photon. This scenario is particularly notable in the context of sub-GeV dark matter, where the mass-off-diagonal leading interaction limits applicability of both CMB energy injection constraints and standard direct detection searches. We present the first general study of the thermal history of pseudo-Dirac DM with splittings from 100 eV to MeV, focusing on the depletion of the heavier “excited” state abundance via scatterings and decays, and on the distinctive signals arising from its small surviving abundance. We analyze CMB energy injection bounds on both DM annihilation and decay, accelerator-based probes, and new line-like direct-detection signals from the excited DM down-scattering on either nuclei or electrons, as well as future search prospects in each channel. We also comment on the relevance of this signal to the few-keV Xenon1T electron excess and on possible diurnal modulation of this signal, and introduce a signal-strength parametrization to facilitate the comparison of future experimental results to theoretical expectations.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Probing inelastic dark matter at the LHC, FASER, and STCF;Physical Review D;2024-01-22

2. Ultraviolet running constraints on low mass dark sectors;Journal of High Energy Physics;2024-01-16

3. Feebly-interacting particles: FIPs 2022 Workshop Report;The European Physical Journal C;2023-12-11

4. Inelastic freeze-in;Physical Review D;2023-11-08

5. Probing freeze-in dark matter via heavy neutrino portal;Physical Review D;2023-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3