Abstract
Abstract
We consider gravitational production of singlet fermions such as sterile neutrinos during and after inflation. The production efficiency due to classical gravity is suppressed by the fermion mass. Quantum gravitational effects, on the other hand, are expected to break conformal invariance of the fermion sector by the Planck scale-suppressed operators irrespective of the mass. We find that such operators are very efficient in fermion production immediately after inflation, generating a significant background of stable or long-lived feebly interacting particles. This applies, in particular, to sterile neutrinos which can constitute cold non-thermal dark matter for a wide range of masses, including the keV scale.
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
2. M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].
3. T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].
4. R.N. Mohapatra and G. Senjanovic, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].
5. J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献