From β to η: a new cohomology for deformed Sasaki-Einstein manifolds

Author:

Tasker Edward Lødøen

Abstract

Abstract We discuss in detail the different analogues of Dolbeault cohomology groups on Sasaki-Einstein manifolds and prove a new vanishing result for the transverse Dolbeault cohomology groups $$ {H}_{\overline{\partial}}^{\left(p,0\right)}(k) $$ H ¯ p 0 k graded by their charge under the Reeb vector. We then introduce a new cohomology, η-cohomology, which is defined by a CR structure and a holomorphic function f with non-vanishing η ≡ df. It is the natural cohomology associated to a class of supersymmetric type IIB flux backgrounds that generalise the notion of a Sasaki-Einstein manifold. These geometries are dual to finite deformations of the 4d $$ \mathcal{N} $$ N = 1 SCFTs described by conventional Sasaki-Einstein manifolds. As such, they are associated to Calabi-Yau algebras with a deformed superpotential. We show how to compute the η-cohomology in terms of the transverse Dolbeault cohomology of the undeformed Sasaki-Einstein space. The gauge-gravity correspondence implies a direct relation between the cyclic homologies of the Calabi-Yau algebra, or equivalently the counting of short multiplets in the deformed SCFT, and the η-cohomology groups. We verify that this relation is satisfied in the case of S5, and use it to predict the reduced cyclic homology groups in the case of deformations of regular Sasaki-Einstein spaces. The corresponding Calabi-Yau algebras describe non-commutative deformations of ℙ2, ℙ1×1 and the del Pezzo surfaces.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-planarizable quivers, orientifolds, and conformal dualities;Journal of High Energy Physics;2023-09-15

2. Exactly Marginal Deformations and Their Supergravity Duals;Physical Review Letters;2022-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3