On SYK traversable wormhole with imperfectly correlated disorders

Author:

Nosaka TomokiORCID,Numasawa Tokiro

Abstract

Abstract In this paper, we study the phase structure of two Sachdev-Ye-Kitaev models (L-system and R-system) coupled by a simple interaction, with imperfectly correlated disorder. When the disorder of the two systems is perfectly correlated, $$ {J}_{i_1\cdots {i}_q}^{(L)}={J}_{i_1\cdots {i}_q}^{(R)} $$ J i 1 i q L = J i 1 i q R , this model is known to exhibit a phase transition at a finite temperature between the two-black hole phase at high temperature and the traversable wormhole phase at low temperature. We find that, as the correlation $$ \left\langle {J}_{i_1\cdots {i}_q}^{(L)}={J}_{i_1\cdots {i}_q}^{(R)}\right\rangle $$ J i 1 i q L = J i 1 i q R is decreased, the critical temperature becomes lower. At the same time, the transmission between the L-system and R-system in the low-temperature phase becomes more suppressed, while the chaos exponent of the whole system becomes larger. Interestingly we also observe that when the correlation is smaller than some q-dependent critical value the phase transition completely disappears in the entire parameter space. At zero temperature, the energy gap becomes larger as we decrease the correlation. We also use a generalized thermofield double state as a variational state. Interestingly, this state coincides with the ground state in the large q limit.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3