Entanglement entropy of local gravitational quenches

Author:

David Justin R.,Mukherjee Jyotirmoy

Abstract

Abstract We study the time dependence of Rényi/entanglement entropies of locally excited states created by fields with integer spins s ≤ 2 in 4 dimensions. For spins 0, 1 these states are characterised by localised energy densities of a given width which travel as a spherical wave at the speed of light. For the spin 2 case, in the absence of a local gauge invariant stress tensor, we probe these states with the Kretschmann scalar and show they represent localised curvature densities which travel at the speed of light. We consider the reduced density matrix of the half space with these excitations and develop methods which include a convenient gauge choice to evaluate the time dependence of Rényi/entanglement entropies as these quenches enter the half region. In all cases, the entanglement entropy grows in time and saturates at log 2. In the limit, the width of these excitations tends to zero, the growth is determined by order 2s + 1 polynomials in the ratio of the distance from the co-dimension-2 entangling surface and time. The polynomials corresponding to quenches created by the fields can be organized in terms of their representations under the SO(2)T × SO(2)L symmetry preserved by the presence of the co-dimension 2 entangling surface. For fields transforming as scalars under this symmetry, the order 2s + 1 polynomial is completely determined by the spin.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Entanglement entropy and the boundary action of edge modes;Journal of High Energy Physics;2024-06-18

2. Entanglement and geometry from subalgebras of the Virasoro algebra;Journal of High Energy Physics;2023-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3