Simplified likelihoods using linearized systematic uncertainties

Author:

Berger N.ORCID

Abstract

Abstract This paper presents a simplified likelihood framework designed to facilitate the reuse, reinterpretation and combination of LHC experimental results. The framework is based on the same underlying structure as the widely used HistFactory format, but with systematic uncertainties considered at linear order only. This simplification leads to large gains in computing performance for the evaluation and maximization of the likelihood function, compared to the original statistical model. The framework accurately describes non-Gaussian effects from low event counts, as well as correlated uncertainties in combinations. While primarily targeted towards binned descriptions of the data, it is also applicable to unbinned models.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference31 articles.

1. G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].

2. CMS collaboration, A portrait of the Higgs boson by the CMS experiment ten years after the discovery, Nature 607 (2022) 60 [arXiv:2207.00043] [INSPIRE].

3. R. Brun and F. Rademakers, ROOT — An Object Oriented Data Analysis Framework, in the proceedings of the AIHENP’96 Workshop, Lausane, Lausanne Switzerland, September 2–6 (1996) [Nucl. Instrum. Meth. A 389 (1997) 81].

4. M.D. Wilkinson et al., The FAIR Guiding Principles for scientific data management and stewardship, Sci. Data 3 (2016) 160018.

5. LHC Reinterpretation Forum collaboration, Reinterpretation of LHC Results for New Physics: Status and Recommendations after Run 2, SciPost Phys. 9 (2020) 022 [arXiv:2003.07868] [INSPIRE].

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3