Hydrodynamization in hybrid Bjorken flow attractors

Author:

Mitra ToshaliORCID,Mondkar SukrutORCID,Mukhopadhyay AyanORCID,Rebhan AntonORCID,Soloviev AlexanderORCID

Abstract

Abstract Hybrid fluid models, consisting of two sectors with more weakly and more strongly self-interacting degrees of freedom coupled consistently as in the semi-holographic framework, have been shown to exhibit an attractor surface for Bjorken flow. Retaining only the simple viscid fluid descriptions of both sectors, we find that, on the attractor surface, the hydrodynamization times of both subsectors decrease with increasing total energy density at the respective point of hydrodynamization following a conformal scaling, reach their minimum values, and subsequently rise rapidly. The minimum values are obtained when the respective energy densities are of the order of the inverse of the dimensionful inter-system coupling. Restricting to attractor curves which can be matched to glasma models at a time set by the saturation scale for both p-p and Pb-Pb collisions, we find that the more weakly coupled sector hydrodynamizes much later, and the strongly coupled sector hydrodynamizes earlier in p-p collisions, since the total energy densities at the respective hydrodynamization times of these sectors fall inside and outside of the conformal window. This holds true also for phenomenologically relevant solutions that are significantly away from the attractor surface at the time we match to glasma models.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How Gubser flow ends in a holographic conformal theory;The European Physical Journal C;2024-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3