Abstract
Abstract
Flat space cosmologies (FSCs) are time dependent solutions of three-dimensional (3D) gravity with a vanishing cosmological constant. They can be constructed from a discrete quotient of empty 3D flat spacetime and are also called shifted-boost orbifolds. Using this quotient structure, we build a new and generalized Selberg zeta function for FSCs, and show that it is directly related to the scalar 1-loop partition function. We then propose an extension of this formalism applicable to more general quotient manifolds $$ \mathcal{M} $$
M
/ℤ, based on representation theory of fields propagating on this background. Our prescription constitutes a novel and expedient method for calculating regularized 1-loop determinants, without resorting to the heat kernel. We compute quasinormal modes in the FSC using the zeroes of a Selberg zeta function, and match them to known results.
Publisher
Springer Science and Business Media LLC