Searching for dark sectors in multi lepton final state in e+e− collisions

Author:

Ciafaloni Paolo,Martelli GabrieleORCID,Raggi Mauro

Abstract

Abstract Electron positron collisions are a very promising environment to search for new physics, and in particular for dark sector related observables. The most challenging experimental problem in detecting dark sector candidates is the very high associated Standard Model background. For this reason it is important to identify observables that are, at the same time, minimally suppressed in the dark sector and highly suppressed in the Standard Model. One example is the e+e → 3(e+e) process that can be mediated either by the production and subsequent decay of dark Higgs (h′), e+eAh′ → 6e [1] or produced by the Standards Model process e+e → 3(e+e). In the following letter we study the relative contribution to observed e+e → 3(e+e) total cross section, coming from the h′ mediated and from the Standard Model processes in the contest of fixed target and low energy collider experiments, with particular attention to the PADME experiment at the INFN Laboratori Nazionali di Frascati.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference24 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Search for dark sector by repurposing the UVX Brazilian synchrotron;The European Physical Journal C;2023-06-17

2. PADME physics program;Journal of Physics: Conference Series;2022-04-01

3. The physics program of the PADME experiment;Physica Scripta;2022-01-14

4. Dark Matter Searches at LNF;Universe;2021-07-09

5. Searching for New Physics with multilepton events at PADME;NUOVO CIM C-COLLOQ C;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3