Abstract
Abstract
In this paper, we investigate the mixed-state entanglement in a model of p-wave superconductivity phase transition using holographic methods. We calculate several entanglement measures, including holographic entanglement entropy (HEE), mutual information (MI), and entanglement wedge cross-section (EWCS). Our results show that these measures display critical behavior at the phase transition points, with the EWCS exhibiting opposite temperature behavior compared to the HEE. Furthermore, we explore the behavior of thermodynamics and holographic quantum information at the zeroth-order phase transition point and find that it is opposite to that observed in the first-order phase transition. Additionally, we find that the critical exponents of all entanglement measures are twice those of the condensate. Our findings also suggest that the EWCS is a more sensitive indicator of the critical behavior of phase transitions than the HEE. Lastly, we uncover a universal inequality in the growth rates of EWCS and MI near critical points in thermal phase transitions, such as p-wave and s-wave superconductivity, suggesting that MI captures more information than EWCS when a phase transition first occurs.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference73 articles.
1. J. Eisert, Entanglement in quantum information theory, Ph.D. Thesis, University of Potsdam, Potsdam, Germany (2006) [quant-ph/0610253].
2. A. Osterloh, L. Amico, G. Falci and R. Fazio, Scaling of Entanglement close to a Quantum Phase Transitions, Nature 416 (2002) 608 [arXiv:0202029].
3. L. Amico, R. Fazio, A. Osterloh and V. Vedral, Entanglement in many-body systems, Rev. Mod. Phys. 80 (2008) 517 [quant-ph/0703044] [INSPIRE].
4. M. Levin and X.-G. Wen, Detecting Topological Order in a Ground State Wave Function, Phys. Rev. Lett. 96 (2006) 110405 [cond-mat/0510613] [INSPIRE].
5. A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [INSPIRE].
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献