Abstract
AbstractWe investigate first order phase transitions in a holographic setting of five-dimensional Einstein gravity coupled to a scalar field, constructing phase diagrams of the dual field theory at finite temperature. We scan over the two-dimensional parameter space of a simple bottom-up model and map out important quantities for the phase transition: the region where first order phase transitions take place; the latent heat, the transition strength parameter α, and the stiffness. We find that α is generically in the range 0.1 to 0.3, and is strongly correlated with the stiffness (the square of the sound speed in a barotropic fluid). Using the LISA Cosmology Working Group gravitational wave power spectrum model corrected for kinetic energy suppression at large α and non-conformal stiffness, we outline the observational prospects at the future space-based detectors LISA and TianQin. A TeV-scale hidden sector with a phase transition described by the model could be observable at both detectors.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference103 articles.
1. D.A. Kirzhnits and A.D. Linde, Symmetry behavior in gauge theories, Annals Phys. 101 (1976) 195 [INSPIRE].
2. A.D. Linde, Phase transitions in gauge theories and cosmology, Rept. Prog. Phys. 42 (1979) 389 [INSPIRE].
3. M.B. Hindmarsh, M. Lüben, J. Lumma and M. Pauly, Phase transitions in the early universe, SciPost Phys. Lect. Notes 24 (2021) 1 [arXiv:2008.09136] [INSPIRE].
4. LISA collaboration, Laser Interferometer Space Antenna, arXiv:1702.00786 [INSPIRE].
5. C. Caprini et al., Detecting gravitational waves from cosmological phase transitions with LISA: an update, JCAP 03 (2020) 024 [arXiv:1910.13125] [INSPIRE].
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献