Subleading bounds on chaos

Author:

Kundu SandipanORCID

Abstract

Abstract Chaos, in quantum systems, can be diagnosed by certain out-of-time-order correlators (OTOCs) that obey the chaos bound of Maldacena, Shenker, and Stanford (MSS). We begin by deriving a dispersion relation for this class of OTOCs, implying that they must satisfy many more constraints beyond the MSS bound. Motivated by this observation, we perform a systematic analysis obtaining an infinite set of constraints on the OTOC. This infinite set includes the MSS bound as the leading constraint. In addition, it also contains subleading bounds that are highly constraining, especially when the MSS bound is saturated by the leading term. These new bounds, among other things, imply that the MSS bound cannot be exactly saturated over any duration of time, however short. Furthermore, we derive a sharp bound on the Lyapunov exponent λ2$$ \frac{6\pi }{\beta } $$ 6 π β of the subleading correction to maximal chaos.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference56 articles.

1. A.I. Larkin and Y.N. Ovchinnikov, Quasiclassical Method in the Theory of Superconductivity, JETP 28 (1969) 1200.

2. S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].

3. A. Kitaev, Hidden correlations in the hawking radiation and thermal noise, in https://youtu.be/OQ9qN8j7EZI.

4. J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].

5. B. Swingle, Unscrambling the physics of out-of-time-order correlators, Nature Phys. 14 (2018) 988.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Late time dynamics in SUSY saddle-dominated scrambling through higher-point OTOC;Physica Scripta;2024-07-23

2. Gravitational Regge bounds;SciPost Physics;2024-01-26

3. Averaged null energy and the renormalization group;Journal of High Energy Physics;2023-12-19

4. Spatial regions, chaos bound and its violation;Nuclear Physics B;2023-06

5. Chaos and operator growth in 2d CFT;Journal of High Energy Physics;2023-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3