The NMSSM is within reach of the LHC: mass correlations & decay signatures

Author:

Baum Sebastian,Shah Nausheen R.,Freese Katherine

Abstract

Abstract The Next-to-Minimal Supersymmetric Standard Model (NMSSM), the singlet extension of the MSSM which fixes many of the MSSM’s shortcomings, is shown to be within reach of the upcoming runs of the Large Hadron Collider (LHC). A systematic treatment of the various Higgs decay channels and their interplay has been lacking due to the seemingly large number of free parameters in the NMSSM’s Higgs sector. We demonstrate that due to the SM-like nature of the observed Higgs boson, the NMSSM’s Higgs and neutralino sectors have highly correlated masses and couplings and can effectively be described by four physically intuitive parameters: the physical masses of the two CP-odd states and their mixing angle, and tan β, which plays a minor role. The heavy Higgs bosons in the NMSSM have large branching ratios into pairs of lighter Higgs bosons or a light Higgs and a Z boson. Search channels arising via these Higgs cascades are unique to models like the NMSSM with a Higgs sector larger than that of the MSSM. In order to cover as much of the NMSSM parameter space as possible, one must combine conventional search strategies employing decays of the additional Higgs bosons into pairs of SM particles with Higgs cascade channels. We demonstrate that such a combination would allow a significant fraction of the viable NMSSM parameter space containing additional Higgs bosons with masses below 1 TeV to be probed at future runs of the LHC.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference129 articles.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dark Matter physics in general NMSSM;Journal of High Energy Physics;2024-08-27

2. Invisible dark matter decays of a non-Standard Model like CP-even scalar boson;Journal of King Saud University - Science;2024-02

3. Dark matter in NMSSM with small λ and κ;Results in Physics;2023-06

4. Search for new particles in an extended Higgs sector with four b quarks in the final state at s=13TeV;Physics Letters B;2022-12

5. Searches for Heavy Resonances with Substructure;Annual Review of Nuclear and Particle Science;2022-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3