Real scalar phase transitions: a nonperturbative analysis

Author:

Gould OliverORCID

Abstract

Abstract We study the thermal phase transitions of a generic real scalar field, without a Z2-symmetry, referred to variously as an inert, sterile or singlet scalar, or ϕ3 + ϕ4 theory. Such a scalar field arises in a wide range of models, including as the inflaton, or as a portal to the dark sector. At high temperatures, we perform dimensional reduction, matching to an effective theory in three dimensions, which we then study both perturbatively to three-loop order and on the lattice. For strong first-order transitions, with large tree-level cubic couplings, our lattice Monte-Carlo simulations agree with perturbation theory within error. However, as the size of the cubic coupling decreases, relative to the quartic coupling, perturbation theory becomes less and less reliable, breaking down completely in the approach to the Z2-symmetric limit, in which the transition is of second order. Notwithstanding, the renormalisation group is shown to significantly extend the validity of perturbation theory. Throughout, our calculations are made as explicit as possible so that this article may serve as a guide for similar calculations in other theories.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cosmological phase transitions: From perturbative particle physics to gravitational waves;Progress in Particle and Nuclear Physics;2024-02

2. Perturbative effective field theory expansions for cosmological phase transitions;Journal of High Energy Physics;2024-01-10

3. BubbleDet: a Python package to compute functional determinants for bubble nucleation;Journal of High Energy Physics;2023-12-11

4. Higher orders for cosmological phase transitions: a global study in a Yukawa model;Journal of High Energy Physics;2023-12-07

5. Stop comparing resummation methods;Journal of Physics G: Nuclear and Particle Physics;2023-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3