Abstract
Abstract
We present the first computation of three-point celestial amplitudes in Minkowski space of massless scalars, photons, gluons, and gravitons. Such amplitudes were previously considered to be zero in the literature because the corresponding scattering amplitudes in the plane wave basis vanish for generic momenta due to momentum conservation. However, the delta function for the momentum conservation has support in the soft and colinear regions, and contributes to the Mellin and shadow integrals that give non-zero celestial amplitudes. We further show that when expanding in the (shadow) conformal basis for the incoming (outgoing) particle wave functions, the amplitudes take the standard form of correlators in two-dimensional conformal field theory. In particular, the three-point celestial gluon amplitudes take the form of a three-point function of a spin-one current with two spin-one primary operators, which strongly supports the relation between soft spinning particles and conserved currents. Moreover, the three-point celestial amplitudes of one graviton and two massless scalars take the form of a correlation function involving a primary operator of conformal weight one and spin two, whose level-one descendent is the supertranslation current.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference48 articles.
1. S. Pasterski, S.-H. Shao and A. Strominger, Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere, Phys. Rev. D 96 (2017) 065026 [arXiv:1701.00049] [INSPIRE].
2. A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE].
3. A.-M. Raclariu, Lectures on Celestial Holography, arXiv:2107.02075 [INSPIRE].
4. S. Pasterski, Lectures on celestial amplitudes, Eur. Phys. J. C 81 (2021) 1062 [arXiv:2108.04801] [INSPIRE].
5. S. Pasterski, M. Pate and A.-M. Raclariu, Celestial Holography, in the proceedings of the Snowmass 2021, Seattle U.S.A., July 17–26 (2021) [arXiv:2111.11392] [INSPIRE].
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献