A forecasting method of multi-category product sales: analysis and application

Author:

Wang JingORCID,Luo Ling

Abstract

AbstractTo solve the problems of high prediction costs and difficult practices in multi-category product classification in the retail industry, optimize the inventory, and improve resilience, this work introduces a forecasting method for multi-category product sales. The forecasting method divides the data into a category set and a numerical set, uses the stacking strategy, and combines it with catboost, decision tree, and extreme gradient boosting. During the feature engineering process, the ratio and classification features are added to the category feature set; the sales at t are used for training to obtain the prediction at (t + 1); and the features used in the prediction at time (t + 1) are generated by the prediction results at t. The update processes of the two sets are combined to form a joint feature update mechanism, and multiple features of k categories are jointly updated. Using this method, data of all categories of retail stores can be linked so that historical data of different categories of goods can provide support for the prediction of each category of goods and solve the problem of insufficient product data and features. The method is verified on the retail sales data obtained from the Kaggle platform, and the mean absolute error and weighted mean absolute percentage error are adopted to analyze the performance of the model. The results reveal that the forecasting method can provide a useful reference to decision-makers.

Funder

The Guiding Project of Hubei Provincial Department of Education

Advantaged characteristic disciplines (groups) of colleges and universities of Hubei Province: intelligent manufacturing discipline group of Wuchang Institute of Technology

Research project of Wuchang Institute of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3