Influence of N-acetyltransferase 2 (NAT2) genotype/single nucleotide polymorphisms on clearance of isoniazid in tuberculosis patients: a systematic review of population pharmacokinetic models

Author:

Thomas Levin,Raju Arun Prasath,Chaithra ,M Sonal Sekhar,Varma Muralidhar,Saravu Kavitha,Banerjee Mithu,SV Chidananda Sanju,Mallayasamy Surulivelrajan,Rao Mahadev

Abstract

Abstract Purpose Significant pharmacokinetic variabilities have been reported for isoniazid across various populations. We aimed to summarize population pharmacokinetic studies of isoniazid in tuberculosis (TB) patients with a specific focus on the influence of N-acetyltransferase 2 (NAT2) genotype/single-nucleotide polymorphism (SNP) on clearance of isoniazid. Methods A systematic search was conducted in PubMed and Embase for articles published in the English language from inception till February 2022 to identify population pharmacokinetic (PopPK) studies of isoniazid. Studies were included if patient population had TB and received isoniazid therapy, non-linear mixed effects modelling, and parametric approach was used for building isoniazid PopPK model and NAT2 genotype/SNP was tested as a covariate for model development. Results A total of 12 articles were identified from PubMed, Embase, and hand searching of articles. Isoniazid disposition was described using a two-compartment model with first-order absorption and linear elimination in most of the studies. Significant covariates influencing the pharmacokinetics of isoniazid were NAT2 genotype, body weight, lean body weight, body mass index, fat-free mass, efavirenz, formulation, CD4 cell count, and gender. Majority of studies conducted in adult TB population have reported a twofold or threefold increase in isoniazid clearance for NAT2 rapid acetylators compared to slow acetylators. Conclusion The variability in disposition of isoniazid can be majorly attributed to NAT2 genotype. This results in a trimodal clearance pattern with a multi-fold increase in clearance of NAT2 rapid acetylators compared to slow acetylators. Further studies exploring the generalizability/adaptability of developed PopPK models in different clinical settings are required.

Funder

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Pharmacology,General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3