Population pharmacokinetics and target attainment of ciprofloxacin in critically ill patients

Author:

Abdulla Alan,Rogouti Omar,Hunfeld Nicole G. M.,Endeman Henrik,Dijkstra Annemieke,van Gelder Teun,Muller Anouk E.,de Winter Brenda C. M.,Koch Birgit C. P.

Abstract

Abstract Purpose To develop and validate a population pharmacokinetic model of ciprofloxacin intravenously in critically ill patients, and determine target attainment to provide guidance for more effective regimens. Methods Non-linear mixed-effects modelling was used for the model development and covariate analysis. Target attainment of an ƒAUC0–24/MIC ≥ 100 for different MICs was calculated for standard dosing regimens. Monte Carlo simulations were performed to define the probability of target attainment (PTA) of several dosing regimens. Results A total of 204 blood samples were collected from 42 ICU patients treated with ciprofloxacin 400–1200 mg/day, with median values for age of 66 years, APACHE II score of 22, BMI of 26 kg/m2, and eGFR of 58.5 mL/min/1.73 m2. The median ƒAUC0–24 and ƒCmax were 29.9 mg•h/L and 3.1 mg/L, respectively. Ciprofloxacin pharmacokinetics were best described by a two-compartment model. We did not find any significant covariate to add to the structural model. The proportion of patients achieving the target ƒAUC0–24/MIC ≥ 100 were 61.9% and 16.7% with MICs of 0.25 and 0.5 mg/L, respectively. Results of the PTA simulations suggest that a dose of ≥ 1200 mg/day is needed to achieve sufficient ƒAUC0–24/MIC ratios. Conclusions The model described the pharmacokinetics of ciprofloxacin in ICU patients adequately. No significant covariates were found and high inter-individual variability of ciprofloxacin pharmacokinetics in ICU patients was observed. The poor target attainment supports the use of higher doses such as 1200 mg/day in critically ill patients, while the variability of inter-individual pharmacokinetics parameters emphasizes the need for therapeutic drug monitoring to ensure optimal exposure.

Funder

University Medical Center Rotterdam

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3