The scientific basis of rational prescribing. A guide to precision clinical pharmacology based on the WHO 6-step method

Author:

Rongen G. A.ORCID, ,Marquet P.,van Gerven J. M. A.

Abstract

Abstract Background and methods This opinion paper expanded on the WHO “six-step approach to optimal pharmacotherapy,” by detailed exploration of the underlying pharmacological and pathophysiological principles. This exercise led to the identification of a large number of domains of research that should be addressed to make clinical pharmacology progress toward “precision clinical pharmacology,” as a prerequisite for precision medicine. Result In order to improve clinical efficacy and safety in patient groups (to guide drug development) as well as in individuals (to guide therapeutic options and optimize clinical outcome), developments in clinical pharmacology should at least tackle the following: (1) molecular diagnostic assays to guide drug design and development and allow physicians to identify the optimal targets for therapy in the individual patient in a quick and precise manner (to guide selection of the right drug for the right patient); (2) the setting up and validation of biomarkers of target engagement and modification as predictors of clinical efficacy and safety; (3) integration of physiological PK/PD models and intermediate markers of pharmacological effects with the natural evolution of the disease to predict the drug dose that most effectively improves clinical outcome in patient groups and individuals, making use of advanced modeling technologies (building on deterministic models, machine-learning, and deep learning algorithms); (4) methodology to validate human or humanized in vitro, ex vivo, and in vivo models for their ability to predict clinical outcome with investigational therapies, including nucleic acids or recombinant genes together with vectors (including viruses or nanoparticles), cell therapy, or therapeutic vaccines; (5) methodological complements to the gold-standard, large Phase 3 randomized clinical trial to provide clinically relevant and reliable data on the efficacy and safety of all treatment options at the population level (pragmatic clinical trials), as well as in small groups of patients (as low as n = 1); (6) regulatory science, so as to optimize the ethical review process, documentation, and monitoring of clinical trials, improve efficiency, and reduce costs of clinical drug development; (7) interventions to effectively improve patient compliance and to rationalize polypharmacy for the reduction of adverse effects and the enhancement of therapeutic interactions; and (8) appraisal of the ecological and societal impact of drug use to safeguard against environmental hazards (following the “One Health” concept) and to reduce drug resistance. Discussion and conclusion As can be seen, precision clinical pharmacology aims at being highly translational, which will require very large panels of complementary skills. Interdisciplinary collaborations, including non-clinical pharmacologists, will be key to achieve such an ambitious program.

Funder

Radboud University Medical Center

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Pharmacology,General Medicine

Reference20 articles.

1. Coleman JJ, Samer C, Zeitlinger M, van Agtmael M, Rongen GA, Marquet P, Simon T, Singer D, Manolopoulos VG, Böttiger Y (2019) The European Association for Clinical Pharmacology and Therapeutics-25 years’ young and going strong. Eur J Clin Pharmacol 75(6):743–750

2. Ho D, Quake SR, McCabe ERB, Chng WJ, Chow EK, Ding X et al (2020) Enabling technologies for personalized and precision medicine. Trends Biotechnol 38(5):497–518

3. Facchinetti F, Lacroix L, Mezquita L, Scoazec JY, Loriot Y, Tselikas L, Gazzah A, Rouleau E, Adam J, Michiels S, Massard C, André F, Olaussen KA, Vassal G, Howarth K, Besse B, Soria JC, Friboulet L, Planchard D (2020) Molecular mechanisms of resistance to BRAF and MEK inhibitors in BRAF(V600E) non-small cell lung cancer. Eur J Cancer 132:211–223

4. Bhagwat SV, McMillen WT, Cai S, Zhao B, Whitesell M, Shen W et al (2020) ERK inhibitor LY3214996 targets ERK pathway-driven cancers: a therapeutic approach toward precision medicine. Mol Cancer Ther 19(2):325–336

5. Nogova L, Mattonet C, Scheffler M, Taubert M, Gardizi M, Sos ML, Michels S, Fischer RN, Limburg M, Abdulla DSY, Persigehl T, Kobe C, Merkelbach-Bruse S, Franklin J, Backes H, Schnell R, Behringer D, Kaminsky B, Eichstaedt M, Stelzer C, Kinzig M, Sörgel F, Tian Y, Junge L, Suleiman AA, Frechen S, Rokitta D, Ouyang D, Fuhr U, Buettner R, Wolf J (2020) Sorafenib and everolimus in patients with advanced solid tumors and KRAS-mutated NSCLC: a phase I trial with early pharmacodynamic FDG-PET assessment. Cancer Med 9(14):4991–5007

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3