Abstract
AbstractThis work introduces and compares approaches for estimating rare-event probabilities related to the number of edges in the random geometric graph on a Poisson point process. In the one-dimensional setting, we derive closed-form expressions for a variety of conditional probabilities related to the number of edges in the random geometric graph and develop conditional Monte Carlo algorithms for estimating rare-event probabilities on this basis. We prove rigorously a reduction in variance when compared to the crude Monte Carlo estimators and illustrate the magnitude of the improvements in a simulation study. In higher dimensions, we use conditional Monte Carlo to remove the fluctuations in the estimator coming from the randomness in the Poisson number of nodes. Finally, building on conceptual insights from large-deviations theory, we illustrate that importance sampling using a Gibbsian point process can further substantially reduce the estimation variance.
Publisher
Springer Science and Business Media LLC
Subject
General Mathematics,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献