Abstract
AbstractInsolvency risk measures play important role in the theory and practice of risk management. In this paper, we provide a numerical procedure to compute vectors of their exact values and prove for them new upper and/or lower bounds which are shown to be attainable. More precisely, we investigate a general insolvency risk measure for a regime-switching Sparre Andersen model in which the distributions of claims and/or wait times are driven by a Markov chain. The measure is defined as an arbitrary increasing function of the conditional expected harm of the deficit at ruin, given the initial state of the Markov chain. A vector-valued operator L, generated by the regime-switching process, is introduced and investigated. We show a close connection between the iterations of L and the risk measure in a finite horizon. The approach assumed in the paper enables to treat in a unified way several discrete and continuous time risk models as well as a variety of important vector-valued insolvency risk measures.
Funder
National Science Centre, Poland
Publisher
Springer Science and Business Media LLC
Subject
General Mathematics,Statistics and Probability