Modelling Joint Behaviour of Asset Prices Using Stochastic Correlation

Author:

Márkus László,Kumar Ashish

Abstract

AbstractAssociation or interdependence of two stock prices is analyzed, and selection criteria for a suitable model developed in the present paper. The association is generated by stochastic correlation, given by a stochastic differential equation (SDE), creating interdependent Wiener processes. These, in turn, drive the SDEs in the Heston model for stock prices. To choose from possible stochastic correlation models, two goodness-of-fit procedures are proposed based on the copula of Wiener increments. One uses the confidence domain for the centered Kendall function, and the other relies on strong and weak tail dependence. The constant correlation model and two different stochastic correlation models, given by Jacobi and hyperbolic tangent transformation of Ornstein-Uhlenbeck (HtanOU) processes, are compared by analyzing daily close prices for Apple and Microsoft stocks. The constant correlation, i.e., the Gaussian copula model, is unanimously rejected by the methods, but all other two are acceptable at a 95% confidence level. The analysis also reveals that even for Wiener processes, stochastic correlation can create tail dependence, unlike constant correlation, which results in multivariate normal distributions and hence zero tail dependence. Hence models with stochastic correlation are suitable to describe more dangerous situations in terms of correlation risk.

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Stochastically Correlated Bivariate Square-Root Model;International Journal of Financial Studies;2024-03-25

2. Margin requirements based on a stochastic correlation model;Journal of Futures Markets;2022-06-28

3. Correction to: Articles in MCAP 23:1 March 2021 Issue to Be Classified as Original Articles;Methodology and Computing in Applied Probability;2021-05-15

4. The DeepONets for Finance: An Approach to Calibrate the Heston Model;Progress in Artificial Intelligence;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3