Author:
Márkus László,Kumar Ashish
Abstract
AbstractAssociation or interdependence of two stock prices is analyzed, and selection criteria for a suitable model developed in the present paper. The association is generated by stochastic correlation, given by a stochastic differential equation (SDE), creating interdependent Wiener processes. These, in turn, drive the SDEs in the Heston model for stock prices. To choose from possible stochastic correlation models, two goodness-of-fit procedures are proposed based on the copula of Wiener increments. One uses the confidence domain for the centered Kendall function, and the other relies on strong and weak tail dependence. The constant correlation model and two different stochastic correlation models, given by Jacobi and hyperbolic tangent transformation of Ornstein-Uhlenbeck (HtanOU) processes, are compared by analyzing daily close prices for Apple and Microsoft stocks. The constant correlation, i.e., the Gaussian copula model, is unanimously rejected by the methods, but all other two are acceptable at a 95% confidence level. The analysis also reveals that even for Wiener processes, stochastic correlation can create tail dependence, unlike constant correlation, which results in multivariate normal distributions and hence zero tail dependence. Hence models with stochastic correlation are suitable to describe more dangerous situations in terms of correlation risk.
Publisher
Springer Science and Business Media LLC
Subject
General Mathematics,Statistics and Probability
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献