Funder
University Grants Commission
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Reference44 articles.
1. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations. J. Math. Phys. 24(3), 522–526 (1983)
2. Conte, R.: Invariant Painlevé analysis of partial differential equations. Phys. Lett. 140(7–8), 383–390 (1989)
3. Bluman, G., Cheviakov, A.F., Anco, S.C.: Applications of Symmetry Methods to Partial Differential Equations, vol. 168. Springer, New York (2010)
4. Bluman, G., Cheviakov, A.F., Anco, S.C.: Construction of conservation laws: how the direct method generalizes Noether’s theorem. In: Proceedings of 4th Workshop Group Analysis of Differential Equations and Integrability, vol. 1, pp. 1–23 (2009)
5. Bluman, G.: Connections between symmetries and conservation laws. Symmetry Integr. Geom. Methods Appl. 1(11), 1–16 (2005)
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献