Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Reference15 articles.
1. Almanza-Vasquez, E., Ortiz, R., Marin-Ramirez, A.-M.: Stability in predator-prey system Lotka–Volterra model incorporating a prey refuge like the law of mass action. Contemporary Engineering Sciences 11, 2049–2057 (2018). https://doi.org/10.12988/ces.2018.85218
2. Apreutesei, N., Dimitriu, G.: On a prey-predator reaction-diffusion system with Holling type III functional response. J. Comput. Appl. Math. 235(2), 366–379 (2010). https://doi.org/10.1016/j.cam.2010.05.040
3. In: Mathematics and Its Applications;V Barbu,1994
4. Camara, B. I.: Complexité de dynamiques de modèles proie-prédateur avec diffusion et applications. phdthesis, Université du Havre (2009)
5. Chakraborty, B., Bairagi, N.: Complexity in a prey-predator model with prey refuge and diffusion. Ecol. Complex. 37, 11–23 (2019)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献