Abstract
AbstractWe derive integrals of combination of Gauss and Bessel functions, by the use of umbral techniques. We show that the method allows the possibility of pursuing new and apparently fruitful avenues in the theory of special functions, displaying interesting links with the theory and the formalism of integral transforms.
Funder
Ente per le Nuove Tecnologie, l’Energia e l’Ambiente
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Reference16 articles.
1. Dattoli, G., Levi, D., Winternitz, P.: Heisenberg algebra, umbral calculus and orthogonal polynomials. J. Math. Phys. 49, 053509 (2008)
2. Licciardi, S., Pidatella, R.M., Artioli, M., Dattoli, G.: Voigt transform and umbral image. Math. Comput. Appl. 25(3), 49 (2020)
3. Babusci, D., Dattoli, G., Gorska, K., Penson, K.A.: The spherical Bessel and struve functions and operational methods. Appl. Math. Comput. 238, 1–6 (2014)
4. Babusci, D., Dattoli, G., Gorska, K., Penson, K.A.: Symbolic methods for the evaluation of sum rules of Bessel functions. J. Math. Phys. 54, 073501 (2013)
5. Babusci, D., Dattoli, G., Licciardi, S., Sabia, E.: Mathematical Methods for Physicists. World Scientific, Singapore (2019)