The Finite Sample Performance of Instrumental Variable-Based Estimators of the Local Average Treatment Effect When Controlling for Covariates

Author:

Bodory Hugo,Huber MartinORCID,Lechner Michael

Abstract

AbstractThis paper investigates the finite sample performance of a range of parametric, semi-parametric, and non-parametric instrumental variable estimators when controlling for a fixed set of covariates to evaluate the local average treatment effect. Our simulation designs are based on empirical labor market data from the US and vary in several dimensions, including effect heterogeneity, instrument selectivity, instrument strength, outcome distribution, and sample size. Among the estimators and simulations considered, non-parametric estimation based on the random forest (a machine learner controlling for covariates in a data-driven way) performs competitive in terms of the average coverage rates of the (bootstrap-based) 95% confidence intervals, while also being relatively precise. Non-parametric kernel regression as well as certain versions of semi-parametric radius matching on the propensity score, pair matching on the covariates, and inverse probability weighting also have a decent coverage, but are less precise than the random forest-based method. In terms of the average root mean squared error of LATE estimation, kernel regression performs best, closely followed by the random forest method, which has the lowest average absolute bias.

Funder

University of St.Gallen

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Economics, Econometrics and Finance (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3