Ensuring Mutual Benefit in a Trans-boundary Industrial Pollution Control Problem

Author:

Perera Ryle S.ORCID,Sato Kimitoshi

Abstract

AbstractTechnological developments play a crucial role in allowing governments and industries to meet carbon emission targets, whilst maintaining cost effectiveness. Mathematical modeling related to climate change has often included technology (including technology transfer between nations) as an effective policy instrument. However, such models often incorporate technology as an exogenous variable, highlighting the need to further interrogate the role of technology, its dynamics and limitations on reducing international pollution levels to improve sustainability, energy reliability and subsequent policy initiatives. Hence, in this study, we consider technology as an endogenous variable within a broader trans-boundary industrial pollution problem with random interference factors to obtain a closed-loop (Markov perfect) Nash equilibrium. We then articulate the Nash non-cooperative and cooperative equilibria via a stochastic linear quadratic differential game paradigm and prove the stability of a cooperative game by using Pareto optimal solution. We show that under such strategies to control carbon pollution a cooperative game is more efficient than a non-cooperative game, emphasizing the importance of technology transfer and collaboration between nations, subsequently serving as a mutual benefit for multi-lateral efforts to reduce global carbon emissions. In doing so, our study highlights the role of government subsidy incentives when collaborating with industry to encourage the integration of carbon-reducing technologies, whilst simultaneously increasing each country’s net revenue. Hence, our study provides a novel insight and framework for policymakers when encouraging industry to use carbon capturing and storage technologies. We also emphasize that efforts to coordinate emissions control should be pursued jointly to ensure mutual benefit for government and industry alike.

Funder

University of New South Wales

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Economics, Econometrics and Finance (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3