An Evolutionary Approach to Passive Learning in Optimal Control Problems

Author:

Blueschke D.,Savin I.,Blueschke-Nikolaeva V.

Abstract

AbstractWe consider the optimal control problem of a small nonlinear econometric model under parameter uncertainty and passive learning (open-loop feedback). Traditionally, this type of problems has been approached by applying linear-quadratic optimization algorithms. However, the literature demonstrated that those methods are very sensitive to the choice of random seeds frequently producing very large objective function values (outliers). Furthermore, to apply those established methods, the original nonlinear problem must be linearized first, which runs the risk of solving already a different problem. Following Savin and Blueschke (Comput Econ 48(2):317–338, 2016) in explicitly addressing parameter uncertainty with a large Monte Carlo experiment of possible parameter realizations and optimizing it with the Differential Evolution algorithm, we extend this approach to the case of passive learning. Our approach provides more robust results demonstrating greater benefit from learning, while at the same time does not require to modify the original nonlinear problem at hand. This result opens new avenues for application of heuristic optimization methods to learning strategies in optimal control research.

Funder

European Research Council

FWF

Council on grants of the President of the Russian Federation

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Economics, Econometrics and Finance (miscellaneous)

Reference22 articles.

1. Amman, H. M., & Kendrick, D. A. (2003). Mitigation of the Lucas critique with stochastic control methods. Journal of Economic Dynamics and Control, 27, 2035–2057.

2. Amman, H. M., Kendrick, D. A., & Tucci, M. P. (2018). Approximating the value function for optimal experimentation. Macroeconomic Dynamics forthcoming.

3. Amman, H. M., & Tucci, M. P. (2018). How active is active learning: Value function method vs an approximation method. Technical Report 788, Department of Economics University of Siena.

4. Beck, G. W., & W, V., (2002). Learning and control in a changing economic environment. Journal of Economic Dynamics and Control, 26(9–10), 1359–1377.

5. Blueschke, D., Blueschke-Nikolaeva, V., & Neck, R. (2013a). Stochastic control of linear and nonlinear econometric models: Some computational aspects. Computational Economics, 42(1), 107–118.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3