Abstract
AbstractCovariance matrix of the asset returns plays an important role in the portfolio selection. A number of papers is focused on the case when the covariance matrix is positive definite. In this paper, we consider portfolio selection with a singular covariance matrix. We describe an iterative method based on a second order damped dynamical systems that solves the linear rank-deficient problem approximately. Since the solution is not unique, we suggest one numerical solution that can be chosen from the iterates that balances the size of portfolio and the risk. The numerical study confirms that the method has good convergence properties and gives a solution as good as or better than the solutions that are based on constrained least norm Moore–Penrose, Lasso, and naive equal-weighted approaches. Finally, we complement our result with an empirical study where we analyze a portfolio with actual returns listed in S&P 500 index.
Funder
Jan Wallanders och Tom Hedelius Stiftelse samt Tore Browaldhs Stiftelse
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Economics, Econometrics and Finance (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献