1. Abraham, A., Corchado, E., & Corchado, J. M. (2009). Hybrid learning machines. Neurocomputing: an International Journal, 72, 2729–2730.
2. Adebiyi, A. A., Adewumi, A. O., & Ayo, C. K. (2014). Comparison of ARIMA and artificial neural networks models for stock price prediction. Journal of Applied Mathematics, 2014, 1–7.
3. Alasadi, S. A., & Bhaya, W. S. (2017). Review of data preprocessing techniques in data mining. Journal of Engineering and Applied Sciences, 12(16), 4102–4107.
4. Alvarez Meza, A. M., Daza Santacoloma, G., Acosta Medina, C. D., & Castellanos Dominguez, G. (2012). Parameter selection in least squares-support vector machines regression oriented, using generalized cross-validation. Dyna, 79(171), 23–30.
5. Basak, S., Kar, S., Saha, S., Khaidem, L., & Dey, S. R. (2019). Predicting the direction of stock market prices using tree-based classifiers. The North American Journal of Economic and Finance, 47, 552–567.