Continental-wide population genetics and post-Pleistocene range expansion in field maple (Acer campestre L.), a subdominant temperate broadleaved tree species

Author:

Wahlsteen EricORCID,Avramidou Evangelia V.ORCID,Bozic Gregor,Mediouni Rida MohammedORCID,Schuldt BernhardORCID,Sobolewska Halina

Abstract

AbstractAcer campestre L. is a rarely silviculturally managed and poorly investigated European tree species which forms seminatural populations and can thus be considered as a model tree for studying post glacial colonisation and phylogeography. Herein, we studied the genetic structure of Acer campestre L. in order to investigate population and genetic diversity clines over the distribution range and for synthesizing the results into a post-Pleistocene range expansion hypothesis. We characterised the genetic diversity and population structure of 61 Acer campestre populations using 12 microsatellite markers. The three detected gene pools are structured geographically creating a longitudinal pattern corresponding with their proposed refugial origin. The results indicated a longitudinal population cline with three strong but highly admixed gene pools. Based on the possible signal from the structure results, a number of phylogeographic dispersal hypotheses were tested using approximate Bayesian computation, and this analysis supported the three refugia scenario with a simultaneous divergence prior to the last glacial maximum. Acer campestre shows a typical decrease in population diversity with northern and western distribution and signatures of surfing alleles in the western expansion axis in 2% of the included alleles. Acer campestre exhibits a high degree of admixture among populations and typical signatures of isolation by distance with no naturally delimited subpopulations. The population structure is rather impacted by geographically, than climatologically means with surfing alleles and alleles strongly limited to geographical areas. Our data also suggest that the population structure still today harbours signatures of post glacial migrations from Mediterranean as well as northern glacial refugia.

Funder

Lund University

Publisher

Springer Science and Business Media LLC

Subject

Horticulture,Genetics,Molecular Biology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3