Strong spatial structuring of clonal genetic diversity within blackthorn (Prunus spinosa) hedgerows and woodlands

Author:

Brown James A.,Montgomery W. Ian,Provan JimORCID

Abstract

AbstractHedgerows are an important component of agricultural landscapes, but in recent years have increasingly faced threats such as habitat loss, land use change, climate change, invasive species, pests and plant pathogens. Given the potential importance of genetic diversity in countering these threats, and the spatial distribution of such diversity within and across natural populations, we analyzed levels and patterns of diversity in blackthorn (Prunus spinosa), a key component of many hedgerows. Twenty-one populations of blackthorn from a mixture of hedgerows and woodlands were genotyped for four nuclear and five chloroplast microsatellites. Three hundred twenty-one unique clonal genotypes were identified from 558 individuals analyzed, 207 of which were found in a single individual. With the exception of a single population that appears to have been planted recently from seed (Peatlands Park), all populations exhibited evidence of vegetative reproduction via suckering. Multi-ramet clones were highly spatially structured within populations, and ranged in size from < 1 to 258 m. These findings indicate that asexual reproduction is widespread in the populations of blackthorn studied. Although levels of clonality varied across study sites, there was clear spatial structuring of clones in each case. Such clonal organization should be taken into account in hedge management or where planting or replanting of hedgerows becomes necessary. Knowledge of the patterns and extent of spatial structuring of genotypes within potential source populations will allow the selection of genetically divergent material, rather than selection of clonal replicates of the same genotype.

Funder

Department of Agriculture Northern Ireland

Publisher

Springer Science and Business Media LLC

Subject

Horticulture,Genetics,Molecular Biology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3