A meta-analysis on the effects of marker coverage, status number, and size of training set on predictive accuracy and heritability estimates from genomic selection in tree breeding

Author:

Beaulieu JeanORCID,Lenz Patrick R.N.,Laverdière Jean-Philippe,Nadeau Simon,Bousquet Jean

Abstract

AbstractGenomic selection (GS) is increasingly used in tree breeding because of the possibility to hasten breeding cycles, increase selection intensity or facilitate multi-trait selection, and to obtain less biased estimates of quantitative genetic parameters such as heritability. However, tree breeders are aiming to obtain accurate estimates of such parameters and breeding values while optimizing sampling and genotyping costs. We conducted a metadata analysis of results from 28 GS studies totalling 115 study-traits. We found that heritability estimates obtained using DNA marker-based information for a variety of traits and species were not significantly related to variation in the total number of markers ranging from about 1500 to 116 000, nor by the marker density, ranging from about 1 to 60 markers/centimorgan, nor by the status number of the breeding populations ranging from about 10 to 620, nor by the size of the training set ranging from 236 to 2458. However, the predictive accuracy of breeding values was generally higher when the status number of the breeding population was smaller, which was expected given the higher level of relatedness in small breeding populations, and the increased ability of a given number of markers to trace the long-range linkage disequilibrium in such conditions. According to expectations, the predictive accuracy also increased with the size of the training set used to build marker-based models. Genotyping arrays with a few to many thousand markers exist for several tree species and with the actual costs, GS could thus be efficiently implemented in many more tree breeding programs, delivering less biased genetic parameters and more accurate estimates of breeding values.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3