Root-promoting Biostimulant Enhances Salinity Tolerance in Wild and Cultivated Rocket Salads

Author:

Melito SORCID,Sarais G,Dessi D.,Santaniello A,Povero G,Piga GK,Giannini V

Abstract

AbstractRocket salads (Diplotaxis spp. and Eruca spp.) are leafy vegetables appreciated for their typical taste and nutritional value. When exposed to salt stress, these plants undergo morpho-physiological and metabolic changes. The aim of the study was to investigate the efficacy of a “root-promoting biostimulant” (Radifarm®) applied during germination (Experiment 1) and during the growth cycle (Experiment 2) on two rocket species under salt stress. Experiment 1 explored if Radifarm® can protect seed from salt stress in early-stage development. Different salt levels (0, 150 and 200 mM NaCl) were combined with different Radifarm® concentrations (0, 0.5, 1, 2.5, 5 mL L− 1). Experiment 2 investigated how Radifarm® can promote plant growth after transplantation when irrigated with saline water (0, 150, and 200 mM NaCl) until harvest. Experiment 1 showed that salt stress significantly affected the germination of rocket salads. The addition of Radifarm® did not improve the germination of D. tenuifolia grown under any salt conditions, but it was beneficial for E. sativa when the highest level of Radifarm® was applied. In Experiment 2, the application of Radifarm® significantly reduced the symptoms of salt stress in both species. In E. sativa, salt stress affected all growth parameters (plant height, leaf number and area). However, under 200 mM NaCl, plants fully recovered when Radifarm® was applied. The same recovery was observed for chlorophyll content in both species. Radifarm® also contributed to increase protein and lipid content compared to plants under salt stress. This study showed that Radifarm® was able to protect both species from salt stress.

Funder

Università degli Studi di Sassari

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3