Agricultural Managements Influence the Diversity of Arbuscular Mycorrhizal Fungi in Vineyards from Chilean Mediterranean Climate Ecosystems

Author:

Aguilar-Paredes Ana,Turrini Alessandra,Avio Luciano,Stuardo Cristian,Velásquez Alexis,Becerra José,Giovannetti Manuela,Seeger MichaelORCID

Abstract

Abstract Purpose Grapevine (Vitis vinifera L.) is a relevant crop, which is associated to arbuscular mycorrhizal fungi (AMF) that are influenced by agricultural practices. The hypothesis of this study is that organic/biodynamic management stimulates grapevine mycorrhizal colonisation and increases AMF diversity in Chilean vineyards. The aim of this study was to determine the influence of agricultural management on AMF association and AMF diversity in Chilean vineyards. Methods Mycorrhizal colonisation of grapevine roots from organic/biodynamic and conventional vineyards in Northern (Elqui Valley), Central (Casablanca and Cachapoal Valleys), and Southern Chile (Maule and Itata Valleys), was determined under a microscope. AMF diversity was analysed by morphological, and molecular characterisation of spores through SSU-ITS-LSU rRNA region sequence analyses. Results AMF colonisation of grapevine roots was influenced by vineyard management independent of the season. Higher mycorrhizal colonisation was detected in organic/biodynamic grapevine soils (20 − 35%), compared with conventional soils (6 − 31%). Twelve AMF species were identified in vineyards, belonging to five Glomeromycota families. Interestingly, organic/biodynamic vineyards showed higher AMF diversity. The three predominant morphotypes were Funneliformis verruculosum (GL1), Septoglomus sp. (GL4) and Septoglomus constrictum (GL5). Molecular analyses of AMF spores highlighted the occurrence of Septoglomus, Acaulospora, Pacispora and Cetraspora genera in vineyards. Conclusions In this study, AMF diversity in Chilean vineyards is described for the first time. The diversity of AMF in vineyards in Chile was higher than the diversity reported in other wine-producing ecosystems. The understanding of agricultural practices on AMF activity and diversity may be crucial to improve the vineyard management.

Funder

ANID

Fondecyt

Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3