Aggregate Stability and Aggregate-Associated Organic Matter along a Soil Chronosequence on the Galápagos Archipelago

Author:

Chittamart Natthapol,Mentler Axel,Rechberger Maria V.,Gerzabek Martin H.,Zehetner FranzORCID

Abstract

AbstractPurpose: Soil aggregate stability is a crucial property affecting soil erodibility, water infiltration and carbon sequestration. This study aimed to determine ultrasonic aggregate stability (USAS) as well as solid and dissolved organic carbon (OC and DOC) associated with aggregate fractions of different aggregation strength and size in volcanic soils along an Andosol-Luvisol-Cambisol chronosequence on the Galápagos Islands. Methods: Aggregate stability was determined by ultrasonication at different energy levels, i.e. 20, 100, and 500 J mL− 1. OC was measured in different aggregate size fractions, i.e. macroaggregates (250–2000 μm), microaggregates (63–250 μm), and the fraction < 63 μm, and released DOC was determined. Results: Aggregate breakdown increased with ultrasonic energy input. The Andosol (short-range order minerals, high OC) had the highest aggregate stability among the studied soils. The OC contents in the stable macro- and microaggregates (at 20 J mL− 1) were highest in the Andosol (20.4 and 20.1%, respectively), followed by the Luvisol (11.6 and 10.8%, respectively) and the Cambisol (6.5 and 6.7%, respectively). The decreasing aggregate-associated OC stabilization with increasing soil age coincided with mineralogical changes from short-range order phases to high-activity clays to low-activity clays. The release of DOC during sonication was highest for the intermediate-aged soil (Luvisol) and mainly occurred at low and intermediate energy levels, while for the young soil (Andosol), released DOC steadily increased until the highest energy level. Conclusions: Our results imply that mineralogical/pedogenic changes over millennial time scales can make volcanic soils more susceptible to losses of OC by leaching and water erosion.

Funder

University of Natural Resources and Life Sciences Vienna

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3