Phytotoxicity of Silver Nanoparticles with Different Surface Properties on Monocots and Dicots Model Plants

Author:

Matras EwelinaORCID,Gorczyca AnnaORCID,Pociecha EwaORCID,Przemieniecki Sebastian WojciechORCID,Oćwieja MagdalenaORCID

Abstract

AbstractThe aim of the research was to evaluate the effect of three types of silver nanoparticles (AgNPs) with different physicochemical properties and silver ions delivered in the form of silver nitrate (AgNO3) at the concentration of 50 mg L−1 on germination and initial growth of monocots (common wheat, sorghum) and dicots (garden cress, white mustard). The AgNPs were prepared using trisodium citrate (TCSB-AgNPs), tannic acid (TA-AgNPs), and cysteamine hydrochloride (CHSB-AgNPs). They exhibited comparable shape, size distribution, and an average size equal to 15 ± 3 nm which was confirmed with the use of transmission electron microscopy. The electrokinetic characteristics revealed that CHSB-AgNPs have positive, whereas TCSB-AgNPs and TA-AgNPs negative surface charge. First, toxicity of the silver compounds was assessed using the Phytotestkit test. Next, after transferring seedlings to pots, shoot length, leaf surface, shoot dry mass, electrolyte leakage measurement, and photosystem II (PSII) efficiency were determined. AgNPs and silver ions delivered in the form of AgNO3 reduced root and shoots length of common wheat, sorghum, and garden cress; leaves surface of garden cress and white mustard; and shoots dry mass of white mustard. The positively charged CHSB-AgNPs and silver ions delivered in the form of AgNO3 showed the greatest inhibition effect. Moreover, silver ions and positively charged CHSB-AgNPs were more toxic to PSII of model plants than negatively charged TCSB-AgNPs and TA-AgNPs. AgNPs impact differed in the case of monocots and dicots, but the size of the changes was not significant, so it concerned individual parameters. The results revealed the interaction strength, which was generally similar in all tested plants, i.e., increasing negative effect in sequence TCSB-AgNPs < TA-AgNPs < silver ions delivered in the form of AgNO3 < CHSB-AgNPs.

Funder

Ministry of Science and Higher Education for UR Krakow in a year 2020

ICSC PAN

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3